
Journal of Computational Physics 229 (2010) 7401–7410
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
A new set of basis functions for the discrete geometric approach

Lorenzo Codecasa a, Ruben Specogna b, Francesco Trevisan b,*

a Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
b Università di Udine, Via delle Scienze 208, I-33100 Udine, Italy

a r t i c l e i n f o a b s t r a c t
Article history:
Received 18 November 2009
Received in revised form 10 June 2010
Accepted 12 June 2010
Available online 19 June 2010

Keywords:
Discrete geometric approach (DGA)
Cell method
Finite integration technique (FIT)
Basis functions
Discrete constitutive equations
Discrete analogs of the hodge star operator
Non-orthogonal polyhedral dual grids
0021-9991/$ - see front matter � 2010 Elsevier Inc
doi:10.1016/j.jcp.2010.06.023

* Corresponding author. Tel.: +39 0432 558285; f
E-mail addresses: codecasa@elet.polimi.it (L. Cod
By exploiting the geometric structure behind Maxwell’s equations, the so called discrete
geometric approach allows to translate the physical laws of electromagnetism into discrete
relations, involving circulations and fluxes associated with the geometric elements of a pair
of interlocked grids: the primal grid and the dual grid.

To form a finite dimensional system of equations, discrete counterparts of the constitu-
tive relations must be introduced in addition. They are referred to as constitutive matrices
which must comply with precise properties (symmetry, positive definiteness, consistency)
in order to guarantee the stability and consistency of the overall finite dimensional system
of equations.

The aim of this work is to introduce a general and efficient set of vector functions asso-
ciated with the edges and faces of a polyhedral primal grids or of a dual grid obtained from
the barycentric subdivision of the boundary of the primal grid; these vector functions com-
ply with precise specifications which allow to construct stable and consistent discrete con-
stitutive equations for the discrete geometric approach in the framework of an energetic
method.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Maxwell equations formulated in terms of partial differential equations are commonly and conveniently discretized by
means of finite elements techniques which produce algebraic relations through a sound mathematical machinery based,
for example, on the Galerkin’s method [2].

However, in the recent years, a less conventional method has gained interest within the computational electromagnetic
community, developed by Yee [1] with a FDTD method, by Clemens and Weiland [3] with the Finite Integration Technique
(FIT), by Tonti [5] with the cell method (CM), by Bossavit [6] with a reinterpretation of finite element method (FEM) and by
present authors [7] with the Discrete Geometric Approach (DGA).

In the DGA approach emphasis is put on the geometric structure behind Maxwell’s equations. The physical laws of elec-
tromagnetism are recognized to be balance equations and they are exactly translated into algebraic relations involving cir-
culations and fluxes (of the electromagnetic field quantities) associated with geometric elements (nodes, edges, faces and
volumes) of a pair of interlocked grids (primal grid-dual grid). Discrete counterparts of the constitutive relations between
field quantities are also introduced; they are approximate algebraic operators (matrices) which map circulations along edges
of the primal grid onto fluxes through faces of the dual grid or viceversa, and involve the material properties and the metric
notions related to the geometry of the grids.
. All rights reserved.
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As a known result [8,9] in order to ensure the consistency and the stability of the overall final system of algebraic equa-
tions, the discrete constitutive relations are required to satisfy stability and consistency properties. The stability requirement
prescribes that the constitutive matrices are symmetric and positive definite. The consistency requirement prescribes that
constitutive matrices exactly map circulations onto fluxes or viceversa, at least for element-wise uniform fields.

Stable and consistent discrete constitutive equations can be naturally constructed for pairs of orthogonal Cartesian grids
as shown by Yee [1] and Clemens and Weiland [3]. Besides, as shown by Bossavit [11], the mass matrices constructed by
means of edge and face elements introduced by Whitney and generalized by Nedelec [18,19], satisfy both the stability
and consistency properties required by DGA [11], for pairs of grids in which the primal is composed of tetrahedra and the
dual grid is obtained according to the barycentric subdivision of the primal. This result unfortunately does not hold in gen-
eral for edge and face elements relative to different geometries. For instance, present authors have proven in [14] that Whit-
ney’s elements for generic hexahedral primal grids do not satisfy the consistency property required by DGA, for any choice of
the dual grid.

By the introduction of a novel set of edge and face vector functions combined with an energetic approach [12], the present
authors were able in [7] to derive novel constitutive matrices satisfying both the consistency and stability properties re-
quired by DGA, not only for tetrahedra but also for (oblique) prisms with triangular base.

However, for pairs of grids where the primal grid is based on general polyhedra, useful in many applications, no consti-
tutive matrices satisfying the consistency and stability properties required by DGA were reported in literature, as far as the
authors know. It is here noted that some approaches can be found in literature for generating discrete counterparts of con-
stitutive relations over polyhedral grids, such the mimetic finite differences [20–22] or the mixed finite elements [23]. How-
ever all these methods do not lead in general to discrete constitutive relations satisfying the consistency property required
by DGA. The present authors did first attempts to fill in this gap with papers [13,14].

The novelty content of this work is the introduction of four new general sets of vector functions for polyhedral primal grids
associated with edges and faces of both the primal and of the dual grids. They are constructed directly in terms of the geo-
metric elements (edges and faces) of the primal and of the dual grids. These vector functions are designed in such a way to
comply with the requirements of the energetic approach introduced by the authors [12] for deriving discrete constitutive
equations which ensure the consistency and stability properties required by DGA.

The functions here proposed belong to a class which, as recently shown by some of the present authors [24], theoretically
ensures the convergence of the solution of discrete equations to the exact solution of the continuous problem. It is here noted
that this class of functions, unlike Whitney’s and Nedelec’s basis functions, do not satisfy any curl-conforming or div-con-
forming properties. Thus in DGA, by using a pair of dual grids instead of a single grid, convergence can be guaranteed by
using basis functions which do not satisfy all the regularity conditions of Whitney’s and Nedelec’s basis functions.

Numerical experiments will demonstrate that the novel discrete constitutive matrices can be computed easily and in a
very efficient way leading to accurate approximations of the solution of a magnetostatic problem proposed as an example.

2. Pair of interlocked grids and geometric properties

Without losing generality, we will focus on a primal grid consisting of a single polyhedron v, Fig. 1.
The geometric elements of the primal grid are nodes, edges, faces and the volume v. We denote a primal edge with ei,

where i = 1, . . . ,L, L being the number of edges of v and a primal face with fj, where j = 1, . . . ,F, F being the number of faces
Fig. 1. A polyhedron v is evidenced, together with a primal edge ei and its dual geometric entity the dual face ~ei , a primal face fj and its dual geometric entity
the dual edge ~f j. Moreover the barycenters gei

and gfj
of edge ei and of face fj are shown respectively.
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of v. The geometric entities of the primal grid like ei, fj are provided with an inner orientation [4,10]; For example in Fig. 1 the
arrows indicate a possible choice of inner orientations for edge ei and face fj respectively.

Interlocked with the primal grid, a dual grid is introduced; each geometric entity of the dual grid is in a one-to-one cor-
respondence (duality pairing) with a geometric element of the primal grid. The dual of a primal volume v is the dual node
denoted as ~v , where symbol ‘‘�” acts on the geometric entity yielding its corresponding dual1; similarly the dual of a primal
edge ei is the dual face ~ei and the dual of a primal face fj is the dual edge ~f j, Fig. 1. We assume arbitrary the location of the dual
node ~v within v, while the geometric construction of dual edges and dual faces is based on the barycentric subdivision of the
boundary of v as follows. We introduce the barycenters gei

; gfj
of ei, fj respectively; a dual edge ~f j is a segment whose boundary

are the nodes ~v; gfj
. A dual face ~ei is a quadrilateral surface made of the union of a pair of triangles; one of the triangles has the

nodes ~v , gei
; gfj

as vertices, similarly for the other, Fig. 1. The only geometric hypothesis on v we assume is that all edges ~ei and
faces ~f j are contained in v. It is straightforward to verify as in [13] that a sufficient, but not a necessary, condition for that is that
v is convex.

Dual edge ~f j and dual face ~ei are endowed with outer orientation [4,8], in such a way that each of the pairs (ei, ~ei), (fj, ~f j) is
oriented in a congruent way.

Vector ei, denoted in roman type, is the edge vector2 associated with the edge ei. Vector fj is the face vector associated with
the face fj defined as f i ¼

R
fj

nds, where n is the unit vector normal to and oriented as fj. Similarly vector ~ei is the face vector
associated with dual face ~ei and ~f j is the edge vector associated with dual edge ~f j.

2.1. Fundamental geometric properties

To simplify the notation hereafter we introduce symbol ri to denote one of the following geometric entities fei; fj; ~ei;
~f jg of

the primal or of the dual grid and symbol ri to denote the corresponding vector in the set fei; f j; ~ei;
~f jg. We denote with ~ri the

geometric entity dual of ri, and with ~ri its corresponding vector in the set fei; f j; ~ei;
~f jg.

Thence, we have ~ri � ri > 0, with i = 1, . . . ,R and R is any in {L,F}.
Hereafter, we will denote with
1 The
2 Its
Ti ¼ ~ri � ri; ð1Þ
the double tensor Ti obtained from the tensor product � of the two vectors ri and its dual ~ri, with i = 1, . . . ,R; its Cartesian
components are ðTiÞhk ¼ ð~ri � riÞhk ¼ ð~riÞhðriÞk, where (ri)h is the hth Cartesian component of ri, with h, k = 1, . . . ,3. The trace of
Ti is
ti ¼ trðTiÞ ¼ ~ri � ri; ð2Þ
where ‘‘�” is the usual inner product between vectors. The product Tix between double tensor Ti and a generic vector x is a
vector and we write
Tix ¼ ðri � xÞ~ri: ð3Þ
The identity tensor is denoted with I and Ix = x holds.
Provided that the dual grid is constructed according to the barycentric subdivision of the boundary of v, in papers [13,15],

we proved the following geometric identities
XL

i¼1

ei � ~ei ¼ jv jI;
XF

i¼1

f j � ~f j ¼ jv jI; ð4Þ
where jvj is the volume of v. Identities (4) can now be conveniently rewritten as
T ¼
XR

i¼1

Ti ¼
XR

i¼1

~ri � ri ¼ jv jI: ð5Þ
Obviously, tensor T is symmetric and tr (T) = 3jvj holds.

2.2. Partition of the polyhedron

We introduce a partition of polyhedron v into a number of subregions sr
i in a one-to-one correspondence with the geo-

metric element ri, with i = 1, . . . ,R. Precisely, subregion se
i ¼ s~e

i is shown in Fig. 2(a), with i = 1, . . . ,L; it is a polyhedral region
individuated by ei, or equivalently ~ei, formed by a pair of tetrahedra, each of which having as vertices the dual node ~v , the
pair of nodes bounding ei, and one of the barycenters of the two primal faces having ei in common. Fig. 2(b), shows subregion
sf

j ¼ s
~f
j , with j = 1, . . . ,F; it is a polyhedral region individuated by fj or equivalently ~f j, formed by a pyramid having as base the

fj face and as apex the dual node ~v .
dual of the dual yields the geometric entity itself.
amplitude, direction and orientation coincide with the length, direction and orientation of ei respectively.



a b

Fig. 2. Subregions se
i ¼ s~e

i and sf
j ¼ s

~f
j are shown in detail.
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Lemma 1. We have that
ti ¼ trðTiÞ ¼ 3jsr
i j ð6Þ
holds, where jsr
i j is the volume of the subregion sr

i .
Proof. Firstly, let us consider the case of a subregion se
i ¼ s~e

i , Fig. 2(a). For dual face ~ei, we write ~ei ¼ [2
h¼1shi, where shi is one

of the two triangular portions forming ~ei; In terms of area vectors we write ~ei ¼
P2

h¼1shi. Then, from the formula giving the
volume of a tetrahedron,
ei � ~ei ¼
X2

h¼1

shi � ei ¼
X2

h¼1

3jVhj ¼ 3 se
i

�� �� ð7Þ
holds, where jVhj is the volume of one of the two tetrahedra Vh forming se
i , Fig. 3. Then from (2) the thesis follows.

Secondly let us consider the case of a subregion sf
j ¼ s

~f
j , Fig. 2(b). From the formula expressing the volume of a pyramid
f j � ~f j ¼ 3jsf
j j ð8Þ
holds. Then from (2) the thesis follows. h
Fig. 3. Detail of a tetrahedron Vh forming the subregions and se
j ¼ s~e

j .
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3. Construction of the basis vector functions

We consider a vector field x(p) in v; For example, an electric field E or a current density vector J within the polyhedron.
The integral quantity
Xr
i ¼

Z
ri

xðpÞ � dr ð9Þ
represents either a circulation or a flux of the field x(p) provided that the geometric entity ri is an edge or a face respectively,
Xr

i is often referred to as Degree of Freedom; Symbol ‘‘dr” stands for dl or ds according to a line or surface integration is per-
formed respectively. For example, (9) yields the usual electro-motive force (e.m.f.) Ui ¼

R
ei

EðpÞ � dl along a primal edge ei or
the current Ii ¼

R
~ei

JðpÞ � ds crossing a dual face ~ei.
Now let us assume that x(p) is uniform in v and thus x does not depend on p. Then by right multiplying (5) by x, from (3),

(5) and (9), since Xr
i ¼ x � ri, we obtain
x ¼ 1
jvj
XR

i¼1

Xr
i ~ri: ð10Þ
Besides, multiplying on the right by x both members of the identity
I ¼ Tj

tj
þ I� Tj

tj

� �
ð11Þ
and using (3), we have that
x ¼
Xr

j

tj
~rj þ I� Tj

tj

� �
x; ð12Þ
holds in subregion sr
j , with j = 1, . . . ,R. Thus by substituting (10) for x in the right hand side of (12), we obtain
x ¼
XR

i¼1

~rj

tj
dij þ I� Tj

tj

� �
~ri

jv j

� �
Xr

i ; ð13Þ
where dij is the Kronecker symbol, or equivalently
x ¼
XR

i¼1

vr
i ðpÞX

r
i ; ð14Þ
in which
vr
i ðpÞ ¼

~rj

tj
dij þ I� Tj

tj

� �
~ri

jv j ; for each p 2 sr
j ; with j ¼ 1; . . . ;R: ð15Þ
Quantities vr
i ðpÞ, with i = 1, . . . ,R, derived in this way, are vector functions, piece-wise uniform in v and uniform in each sub-

region sr
j with j = 1, . . . ,R. Moreover they satisfy the following three properties, fundamental to construct constitutive matri-

ces for the DGA, as outlined by the authors in [12].

Property 1. The functions v r
i ðpÞ, with i = 1, . . . ,R are linearly independent, and are such that
Z

rj

vr
i ðpÞ � dr ¼ dij; ð16Þ
holds, for i, j = 1, . . . ,R.
Proof. In the subregion sr
j adjacent to rj, we write
Z

rj

vr
i ðpÞ � dr ¼

~rj

tj
dij þ I� Tj

tj

� �
~ri

jvj

� �
� rj ¼ dij þ

~ri

jvj �
rj � ~ri

tjjv j
~rj

� �
� rj ¼ dij þ

rj � ~ri

jvj �
rj � ~ri

jvj

� �
¼ dij:
In the second equality (3) has been applied, while in the first and last equalities we used (2). Thus (16) holds. As a conse-
quence functions vr

i ðpÞ, with i = 1, . . . ,R are linearly independent. h
Property 2. The functions v r
i ðpÞ, with i = 1, . . . ,R allow to represent exactly a uniform vector field from its Degrees of Freedom,

according to (14).
Proof. The thesis straightforwardly follows from (13).
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Property 3. The consistency condition
Z
v

vr
i ðpÞdv ¼ ~ri; ð17Þ
holds, with i = 1, . . . ,R.
Proof. We compute
Z
v

vr
i ðpÞdv ¼

XR

j¼1

Z
sr

j

vr
i ðpÞdv ¼

XR

j¼1

~rj

tj
dij þ I� Tj

tj

� �
~ri

jv j

� �
jsr

j j ¼
XR

j¼1

~rj

jsr
j j

tj
dij þ

XR

j¼1

jsr
j j

 !
~ri

jv j �
1
3

XR

j¼1

Tj

 !
~ri

jvj

¼ 1
3

~ri þ ~ri �
1
3

~ri ¼ ~ri;
where, in the second equality we used Lemma 1 and in the third equality we used the identity (5). h
4. Constitutive matrix

We consider a single polyhedron v, where a pair of vector fields x, y exists, related by a constitutive relation
y ¼ mx; ð18Þ
m being a double tensor, representing the material property, assumed to be symmetric positive definite and homogeneous in
v.

Now, we focus on the pairs of geometric elements ri, ~ri, one dual of the other, with i = 1, . . . ,R and we introduce the cor-
responding pair of Degrees of freedom Xr

i ¼
R

ri
x � dr, Y~r

i ¼
R

~ri
y � dr. We denote in boldface type the arrays Xr, Y~r , of dimension

R, formed by Xr
i , Y~r

i respectively, and we introduce the discrete counterpart of (18) in v as
Y~r ffi Mr~rðmÞXr; ð19Þ
where Mr~rðmÞ is a constitutive matrix of dimension R mapping the Degrees of Freedom array Xr onto Y~r associated with geo-
metric elements ri, ~ri, one dual of the other respectively; (19) holds only approximately, yielding the well known constitutive
error affecting the overall discrete problem [8].

As shown in [8,9,11] the aim is to construct a constitutive matrix Mr~rðmÞ which complies with the following require-
ments: (i) it is symmetric, (ii) it is positive definite and (iii) it is such that (19) holds exactly at least for a pair of uniform
fields x, y in v. It is well known that the requirements (i) and (ii) are fundamental to guarantee the stability of the discretized
equations while the last requirement (iii) guarantees the consistency of the discretized equations in the DGA.

In order to comply with these requirements, we will resort to the so called energetic approach proposed in [7,12,14,15]
which relies solely on Properties 1, 2 and 3 for the vector basis function vr

i ðpÞ with i = 1, . . . ,R. According to such energetic
approach, the number
Mr~r
ij ðmÞ ¼

Z
v

vr
i ðpÞ �m vr

j ðpÞdv i; j ¼ 1; . . . ;R ð20Þ
is the i, j entry of the constitutive matrix Mr~rðmÞ complying with the requirements (i) (ii) and (iii).
Interestingly, the integration in (20) can be performed exactly, the vector basis function vr

i ðpÞ being piece-wise uniform.
Given points pk 2 sr

k, with k = 1, . . . ,R, we obtain
Mr~r
ij ðmÞ ¼

XR

k¼1

vr
i ðpkÞ �mvr

j ðpkÞ
tk

3
; ð21Þ
where we used Lemma 1.
We also note that the proposed approach suggests two alternative ways to compute a constitutive matrix mapping Xr

onto Y~r , satisfying Properties 1, 2 and 3. One way is provided by matrix Mr~rðmÞ whose entries are Mr~r
ij ðmÞ as given by

(20). Let us now substitute in (20) ~r for r and m�1 for m, obtaining
M~rr
ij ðm�1Þ ¼

Z
v

v~r
i ðpÞ �m�1v~r

j ðpÞdv i; j ¼ 1; . . . ;R; ð22Þ
the entries of a matrix M~rr
ij ðm�1Þ mapping Yr onto X~r; Then M~rr

ij ðm�1Þ
� ��1

is a new matrix mapping Xr onto Y~r . As it can be
verified by examples, matrices Mr~rðmÞ and M~rr

ij ðm�1Þ
� ��1

are in general different matrices and thus provide different coun-
terparts of constitutive relations.
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5. Numerical results

The proposed constitutive matrices can be conveniently used to solve various typologies of problems arising in compu-
tational physics. In order to test the proposed constitutive matrices, we focus on reference magnetostatic problems which
are solved by using a pair of complementary geometric formulations. The two formulations are based on circulation on pri-
mal edges of a magnetic vector potential A and on a magnetic scalar potential X defined in primal nodes respectively; see for
example [16] for a detailed description. The magnetostatic formulations need the reluctance and the permeance constitutive
matrices, which are described in the following subsections.

5.1. Reluctance matrix using vf
i

The reluctance matrix m ¼Mf~f ðmÞ for polyhedron v relates the magnetic induction flux Ui = Xi associated with fi with the
magneto-motive forces (m.m.f.s) Fi = Yi associated with ~f i, with i = 1, . . . ,F, where m is the uniform reluctivity in v; dim(m) = F
holds. The entries of m are
mij ¼ Mf~f
ij ðmÞ ¼

Z
v

vf
i � mvf

j dv :
5.2. Reluctance matrix using v
~f
i

As a first step we construct the permeance matrix ~l ¼M
~f f ðm�1Þ for the polyhedron v relating the m.m.f.s Fi = Xi with the

magnetic induction fluxes Ui = Yi, with i = 1, . . . ,F; dim(~l) = F holds. The entries of ~l are
~lij ¼ M
~f f
ij ðm

�1Þ ¼
Z

v
v

~f
i � lv

~f
j dv ;
where l = m�1 is the uniform permeability in v. As a second step, we invert ~l obtaining the reluctance matrix
~m ¼ ~l�1 ¼ ðM~f f ðm�1ÞÞ�1; ~m is an alternative constitutive matrix with respect to m.

5.3. Permeance matrix using ve
i

The permeance matrix l ¼Me~eðlÞ for polyhedron v relates the m.m.f.s Fi = Xi associated with ei with the magnetic induc-
tion fluxes Ui = Yi associated with ~ei, with i = 1, . . . ,L; dim(l) = L holds. The entries of l are
lij ¼ Me~e
ij ðlÞ ¼

Z
v

ve
i � lve

j dv :
5.4. Permeance matrix using v~e
i

As a first step, we construct matrix ~m ¼ M~eeðl�1Þ for polyhedron v relating Ui = Xi with Fi = Yi; dim(~m) = L holds. The entries
of ~m are
~mij ¼ M~ee
ij ðl�1Þ ¼

Z
v

v~e
i � mv~e

j dv :
As a second step, we invert ~m obtaining the permeance matrix ~l ¼ ðM~eeðl�1ÞÞ�1 ¼ ~m�1. Again, ~l is an alternative constitutive
matrix with respect to l.

5.5. Consistency test

To test the consistency numerically, firstly we consider a static case, where the actual fields are uniform.
In the domain D — a cube of unitary edge — we constructed an undistorted primal complex consisting of 3 � 3 � 3 cubical

elements, see Fig. 4(a).
By displacing some nodes, we obtain a new deformed primal complex K made of 27 hexahedra, see Fig. 4(b). Then, we

apply the subgridding technique [17] by subdividing the central hexahedron in 64 hexahedra and the hexahedron below in 8
hexahedra, see Fig. 4(c). Thus, the final grid in formed by 97 cells, 369 faces, 478 edges, and 195 nodes.

The boundary conditions have been set in order to generate in D a uniform magnetic induction field B of amplitude 1T and
pointing down the vertical axis.

The linear systems of equations arising from the magnetostatic problem discretized by the DGA using both complemen-
tary formulations [16] on the polyhedral primal complex K are solved using the reluctance and permeance constitutive
matrices described in Sections 5.1, 5.2 and 5.3, 5.4, respectively.



a
b

c
d

Fig. 4. (a) The unitary cube D is partitioned into 27 cubes. (b) Some of the nodes are displaced, obtaining 27 hexahedra. (c) The subgridding is applied,
subdividing two hexahedra in 64 and 8 hexahedra, respectively. (d) The uniform field, solution of the magnetostatic problem, is interpolated exactly.
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It is possible to see that the uniform field solution of the magnetostatic problem is interpolated exactly in the whole do-
main D, see Fig. 4(d), using both formulations and constitutive matrices constructed by means of basis functions of the pri-
mal or dual complex.
5.6. A magnetostatic problem

We will now move to a non-uniform field problem.
The reluctance and permeance constitutive matrices described in Sections 5.1, 5.2 and 5.3, 5.4, respectively, are used to

solve a reference magnetostatic problem consisting in a sphere of radius R = 0.35 m made of linear magnetic medium with
relative permeability lr = 1000 immersed in air. Only 1/8 of the problem is meshed with a grid made of 26,121 polyhedra,
85,507 faces, 88,317 edges, and 28,932 nodes.

The primal grid is obtained by means of the subgridding of an initial coarse hexahedral grid and by cutting each hexahe-
dra intersecting the spherical surface by means of triangles [17], as shown in Fig. 5.

In Fig. 6, the polyhedral grid of the sphere and the triangular faces bounding the spherical surface are represented. This
kind of polyhedral elements provide a very good tessellation of the spherical surface avoiding the staircase effect.

An external uniform induction field B ¼ Bzẑ, Bz = 1 T being the field component along the vertical axis, is enforced by
boundary conditions.

The magnetostatic problem using the A formulation [16] consists of 88,317 unknowns and it is solved in about 3.1 s and
5.3 s, using the m and ~m, respectively.

The magnetostatic problem using the X formulation [16] consists of 28,932 unknowns and it is solved in about 0.9 s and
1.8 s, using the l and ~l, respectively.
Fig. 5. The trace on the boundary of the domain box of the grid obtained by the subgridding of an initial hexahedral grid and successive hexahedral splitting
is shown.



Fig. 6. Detail of the polyhedral grid and its trace on the interface surface between sphere and air.
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Fig. 7 shows the computed component Bz along the z axis of B using both complementary magnetostatic formulations,
along a number of sample points on a horizontal line. In the same Figure, Bz has been compared with the analytical solution
showing very good agreement.

Table 1 contains the numbers of iterations needed by the Conjugate Orthogonal Conjugate Gradient (COCG) method to
converge at the solution of the linear systems of equations together with the error in energy norm, evaluated by using
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Fig. 7. The computed Bz components by the complementary magnetostatic formulations on a number of sample points along a line are shown and
compared with the analytical solutions.



Table 1
COCG iterations and errors in energy norm for each proposed constitutive matrix.

Constitutive matrix m ~m l ~l

Formulation [16] A A X X
Unknowns 88,317 88,317 28,932 28,932
COCG iterations 106 193 74 157
�B [%] 0.60 0.86 0.43 0.78
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�B ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
D mjB� Bref j2dVR

D mjBref j2dV

vuut ;
which also shows a very good agreement with the analytical solution.

6. Conclusion

New vector basis functions, which allow to construct stable and consistent discrete constitutive equations for the Discrete
Geometric Approach, have been introduced. The computation of the resulting constitutive matrices is computationally effi-
cient, being based on a closed-form geometric construction. The results obtained by such constitutive matrices, considering a
magnetostatic benchmark problem, are in good agreement with the analytical solution.
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